AE62: Sub-femtosecond bunch length diagnostic

PI: G. Andonian

Collaborators: N. Sudar, Y. Sakai (UCLA), A. Ovodenko (Radiabeam), M. Weikum (DESY), M. Babzien, M. Fedurin, K. Kusche, R. Malone, I. Pogorelsky, M. Polyanski, C. Swinson (BNL ATF)

Funding source: DOE SBIR Award # DE-SC0007701 (main) + internal funds committed

Status: * (Awaiting final technical report)

2019 ATF Users Meeting: Application for Continuation (no experiment time received since the last users meeting)

Science Case

Motivation: characterization of ultra-short bunches (sub-fs resolution)

- Laser (TEM₁₀ mode)/e-beam interaction in undulator
 - Angular modulation of beam Dependent on longitudinal coordinate
- RF deflector provides vertical streak for "slow" modulation
- Angular modulation ("sweep") observable on distant screen (x' -> x)
- Scheme provides enhanced resolution over RF deflector alone.
 - "Attoscope"

Experimental Setup

- Configuration is similar to prior IFEL/Attoscope runs (BL2)
 - Benefits from week's prior IFEL run (less install time)
 - New BL2 layout may require reconfig of mode converter

Plans

- No beamtime in 2018 ATF not ready for both deflector and CO2 availability at same time
- Next run goal: Observe full modulation
 - Build off of previous results
 - Resolution on screen may be limiting
 - Deflecting voltage at TCAV,
 - Beam intrinsic emittance may need improvement (slits)
 - Deconvolve effects of beam transport
- Challenge: optimal laser and x-band simulation
 - Leverage off IFEL experiment (alignment, synchronization)
 - No new HW, reconfigure mod converter to accommodate new setup
- Request for next run
 - 1-2 weeks (Reestablish laser conditions & Realign/retune undulator)
 - 1-2 weeks run with laser + deflecting cavity
- Status: No cost extension expiring

Electron Beam Requirements

Parameter	Nominal	Requested Experiment Parameters
Beam Energy (MeV)	50-65	44-48
Bunch Charge (nC)	0.1-0.5	.35
Compression	Down to 100 fs (up to 1 kA peak current)	N/A
Transverse size at IP (sigma, um)	30 – 100 (dependent on IP position)	60um
Normalized Emittance (um)	1 (at 0.3 nC)	1
Rep. Rate (Hz)	1.5	1.5
Trains mode	Single bunch	single

Special Equipment:

Deflecting cavity

CO₂ Laser Requirements

The following options are available at the laser source. Note that the maximum power available at your experiment interaction point will depend on the laser transport method.

OPTION 1 (full power, ~1 shot per minute) regular gas in final amplifier (winter-spring 2018)

1 TW max (3.5 ps, 5 J, 30% of energy in post-pulses) 10.25 um M^2 $^{\sim}$ 2 linear polarization

isotopic final amplifier (may be available late 2018)

2 TW max (2 ps, 4 J, single pulse) 9.25 um M^2 ~2 linear polarization

OPTION 2 (regen only, 1.5 or 3 Hz)

3 GW max (2 ps, 6 mJ)
9.25 um
M^2 ~1.5
linear polarization (circular available at slightly reduced power)

Interaction Point location: Laser room/ electron experiment hall - delete as necessary

2018 Experiment Time Estimates

Run Hours (include setup time in hours estimate):80-120

Number of electron beam only hours:80 Number of CO_2 laser hours delivered to laser experiment hall ("FEL room"):0 Number of CO_2 laser hours, + ebeam, delivered to electron beam experiment hall:80

Overall % setup time:50%

Hazards & installation requirements:

Large installation (chamber, insertion device etc...): N

Laser use (other than CO₂): N

Cryogens: N

Introducing new magnetic elements: Y (undulator)

Introducing new materials into the beam path: N

Any other foreseeable beam line modifications: Y (slits for deflecting cavity)

Please describe further where necessary